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Abstract

In this paper, we formulate a coupled discontinuous/continuous Galerkin method for
the numerical solution of convection-diffusion type equations which arise in environ-
mental quality modeling. One motivation for this approach is to use a discontinuous
method where the solution is rough, e.g., in regions of high gradients, and use a
continuous method where the solution is smooth. In this approach, the domain is
decomposed into two regions, and appropriate transmission conditions are applied at
the interface between regions. In one region, a local discontinuous Galerkin method is
applied, and in the other region a standard continuous Galerkin method is employed.

Introduction

Galerkin finite element methods, with continuous, piecewise polynomial approximat-
ing spaces, have long been employed to approximate solutions to partial differential
equations. Within the past few years, however, a number of researchers have in-
vestigated Galerkin methods based on fully discontinuous approximating spaces, the
so-called discontinuous Galerkin (DG) methods [10].

DG methods possess several interesting features which may be useful in certain ap-
plications. First, they easily allow for varying the polynomial order of approximation
from one element to the next. They allow for very general meshes, including non-
conforming meshes, without hanging nodes or the need for a mortar space. One can
also build stability post-processing into the methods for minimizing oscillations in
the presence of high gradients. Finally, the methods are “locally conservative,” that
is, they are based on satisfying conservation principles element-by-element. One po-
tential disadvantage of DG methods over continuous Galerkin methods is that the
degrees of freedom in a DG method are associated with elements, while in the con-
tinuous Galerkin method they are associated with nodes. Hence, for the same degree



approximating spaces on the same grid, there may be many more degrees of freedom
needed for the DG method. Even in a one-dimensional mesh with N elements, there
are N + 1 degrees of freedom when using a continuous, piecewise linear space, and
2N degrees of freedom when using a discontinuous, piecewise linear space.

Recently, the authors and collaborators have investigated a variant of the DG method,
known as the local discontinuous Galerkin (LDG) method, for convection-diffusion
equations. The LDG method was first proposed by Bassi and Rebay [4] for the
Navier-Stokes equations, and first analyzed by Cockburn and Shu [12]. Cockburn
and Dawson extended this analysis to variable coefficient, multidimensional trans-
port problems with more general boundary conditions [7], and in collaboration with
Aizinger and Castillo, studied the method for the solution of contaminant transport
problems [2]. Recently, Aizinger and Dawson also applied the LDG method to the
shallow water equations [1]. LDG methods have been studied for elliptic equations
[5, 8], electromagnetics [3] and Stokes problems [9].

In environmental quality modeling, such as contaminant transport and circulation
in shallow water systems, there are often regions where the solution is “smooth”
transitioning to regions where the solution is “rough.” In the smooth regions, it
may be advantageous to use continuous Galerkin methods, which are well-known
to give good approximations to smooth solutions. Where the solution is rough, it
may be better to use a DG method, since these methods have built-in stabilizing
mechanisms (e.g. slope limiting). Another reason for using a DG method in parts of
the domain is to utilize their ability to easily incorporate h and p adaptivity. In this
paper, we propose a coupled continuous-discontinuous Galerkin approach. We study
such an approach for linear transport problems, such as those arising in contaminant
transport, and develop appropriate transmission conditions across interfaces between
the two methods. In future research, we hope to apply this idea to the numerical
simulation of shallow water hydrodynamics and other transport type applications.

A coupled continuous-discontinuous approach has also been studied by Perugia and
Schétzau [15] for the modeling of elliptic problems arising in electromagnetics. The
motivation for their work was the ability of the DG method to handle nonmatching
element interfaces. This feature is of interest in our applications, but we are also
concerned with the DG method’s ability to handle transient flow with sharp fronts.

The paper is organized as follows. In the next section, we state the problem to be
considered and formulate the coupled LDG-continuous Galerkin finite element (CFE)
method. Then, in section three, some numerical results are given.



Problem definition and coupled LDG/CFE method

Let © be a bounded domain in IR?, d = 1,2 or 3, with boundary 09 decomposed into
inflow 0€; and outflow/noflow 0, portions
0% = {x€d:u-n<0}, (1)
09, = {z€0Q:u-n>0}, (2)

determined by a given velocity field u, where n is the unit outward normal to 0S2.
Consider the model transport problem: find ¢ = ¢(z, t) such that

3
4
3
6

0ic+ V- (uc— DVe)+ac = f, (z,t) € Q, t >0,
(uc—DVc¢)-n = (u-n)g, on 0%,
(—=DVe)-n = 0, on 05,

(
(
(
c(z,0) = (), onQ. (

)
)
)
)

Here g and ¢ are specified boundary and initial data respectively; o > 0 and D
is assumed to be symmetric, positive semi-definite and bounded. We assume the
coefficients, initial and boundary data, and domain are sufficiently smooth so that a
unique solution ¢ exists.

Let {7r}n>0 denote a quasi-uniform family of finite element partitions of {2 such that
no element 2. crosses 0f2. Let h. denote the element diameter and A the maximal
element diameter. We assume each element (), has a Lipschitz boundary 0f2,.

For any function w € H'(Q,) for each element ., we denote its trace on 9, from
inside 2, by w’, and (when appropriate) the trace from outside Q. by w°. Let n;
denote a fixed unit vector normal to any interior face v; between elements. Set

B = 1i ; + = | .
w”(x) = 31_1%17 w(x + sn;), w™(x) Sl_1>%1+w(x + sn;),
then define .
S §(w+—|—w_), [w] =w™ —w.

Consider a partition of domain €2 into two disjoint subdomains €2; and € with
interface I' internal to €2. Let ¢; denote the restriction of ¢ to €27, and ¢y the restriction
of ¢ to Q7. We will define our coupled method by discretizing the problem in €2; via
the LDG Method and in Qj via the standard Galerkin finite element method. We
assume that element boundaries in the triangulation 7, align with the interface I'. In
7, because of the flexibility of the LDG method, we can allow for the elements €2,



to be nonconforming; that is, the element boundaries need not match. However, we
will assume that any face v in the mesh intersects at most N elements, where N is
bounded independent of A.

Weak formulations

In Q;, we rewrite (3) in a mixed form

8tC[ + V(UC] + Z) —+ acr = f, (7)
zZ= —VC[, (8)
z=Dz. 9)

with boundary conditions

(uc; +2)-n = (u-n)g on 9 NI, (10)

zmn = 0 on 082y N 08, (11)

We will use the L?>(R) inner product notation (-,-) for domains R € IR?, and the
notation (u,v)r to denote integration over d — 1 dimensional surfaces. Multiply the

above equations by arbitrary, smooth test functions w € H'(Q), v, 7 € (H'())?
respectively, and integrate by parts over each element €2, C {2; to obtain

(Orer,w)a, — (wer + 2, Vw)a, + ((uer + 2) - e, w)aa, /o0, (12)
+(ucr - n, w)an.nan, + ((ucr + 2) - n,w)sa,ar + (acr, w)a,

= (f’ w)Qe - <(U . n)ga w)aﬂeﬂ()ﬂp

(Z,v)q, — (c1, V- v)q, + {c1,v - ne)oa, = 0, (13)
and

(Dz,0)q, — (2,0)a. = 0. (14)

In Qp, we apply the continuous Galerkin finite element method. The weak form
is obtained by multiplying (3) by » € H'(Qp) and integrating by parts over the
subdomain to obtain

(atCH: T‘)QH — (u Cir — DVCH, VT)QH + <u Cir-n, r>BQHOBQo (15)
+((u Cir — DVCII) ' n, T>F + (OéCH, T)QH

= (f’ T)QH - <(u . n)g, T)aﬂ,,man,-



On the interface I', fix the unit normal nr to face outward from €2; and inward to
Q. We require the following transmissibility conditions between the two domains:

Cr = (g1 at F, (16)
DVC] nr = DVCH - nr at I (17)

Coupling the LDG to the CFE method

In this section we formulate the coupling of the LDG method discretizing {2; and the
continuous Galerkin method discretizing 2;. On €2, C 27, we use the approximating
space PF(Q,), where P*e denotes the set of polynomials of degree at most k.. Let

Wh={w:Qr = R:wlg, €P"(Q)}

On Q, we use the approximating space R, C H'(y) consisting of continuous,
piecewise polynomials of degree at most k.

In Q;, we approximate c;(-,t) by Cy(-,t) € Wy, 2(-,t) by Z(-,t) € (W,)% and Z(-, )
by Z(-,t) € (Wy)%, where Cr, Z and Z satisfy weak formulations similar to (12)-(14).
In (12) the values of ¢; and z across element boundaries are approximated by

w | C uione>0,
cr=Cf = { Co wen, <0, on 052./08Y,
2~ Z, on 09,/09;.

In (13) the value of ¢; across element boundaries is defined as:

cgr ~ C; ondQ./08;. (18)

We define transmissibility conditions for ¢ and z at the interface to be:

U __ CI’ u - nF > 07 . .
cr CE = { Cur w-nr <0, at [ in equations (12) and (15) , (19)
z2=—-DVer Z at [ in equations (12) and (15) , (20)
crCp at I in equation (13), (21)

Incorporating these boundary conditions, edge, and interface approximations, we sum
(12), (13) and (14) over all elements €, € ;. Let Y, denote summation over all



elements €2, C €17, and let >°, denote summation over all interior boundaries ~; such
that v; € I' of domain €);. Consider the following functionals:

.A(C], CF, Z,w) = Z [(atC],w)Qe — (’LLC[ + Z, V’UJ)QE + (CkC[,?U)Qe] (22)

e

+ D AWCF + Z) - i, [wly + ((uCr) - n,w)an,na0,

+((uCﬁ + Z) -nr, ’U))I‘,

B(Cy,Cu, Z,v) Z[ (Z,v)a, — (C1,V - v)a, +Z Cr,[v] - ni)y, (23)

+ <Cfav n)oa, v + (Cu, v - nr)r,

C(Z,2Z,8) = Y [(=Z,0)a + (DZ,0)a.l, (24)
'D(CH,C#,Z,T) = (atCH,T')QH—(’LLCH,VT)QH+(DVCH,VT')QH

+ (aCru,r)a, + (uCh) - n, ) sa,noe0,
— (uCE-np,r)r —{Z - np,r)r.

Lw) = Y (f,w)a, + {gu-n, w)s0,no0;, (25)

e

F(T) = (fa T)QH - <gu "N, T>3911039i' (26)

We are now prepared to formulate the coupled LDG and CFE method. At t=0 we
define C[(,O) = C? € Wh, and CH(',O) = C?I S Rh by

(CY — cI, w)q, Vwe W, (27)
(Ch — <l r)an Vre Ry). (28)

For each t > 0, we seek (Cy,Cuy, Z,Z) € Wi, x Ry x (W,)4 x (W) satisfying

A(Cy, CE, Z,w
B(CI,CH,Z v
C(Z,Z,v
D(Cy,Cr, Z,r

) L(w) Yw e Wy,
) = 0 Voe (W),
v) = 0 Vi e (W),
) = F(r) VréeER,y.

In [13], the following stability and error estimate are proven for the method outlined
above.



Proposition 1 The scheme (27)-(32) satisfies the stability result

~ T T
1 CrCn 21 < (Il + [ (unl, g)oodt) " + [ 11fll0 .

where
I (Cr.Cu, 2) I = CH(D)II3, + ICu(D)lg,
T T
+2 [l Crllydt+ 2 [l Cullh e

T ~ T
+2 [ IDY2ZIRdt+ 2 [ 1DV Clf at
T T
+ [ Sl (€t + [ el (€1 = Ca))rat
i

T T
[ (- nl, (Cn)onyron,dt + [ (lunl, (€1 )onoon, d.

Theorem 1 For c sufficiently smooth and u € WL (Q), the scheme (27)-(32) satisfies
the error estimate

I (cr — Cryen — C, 2= Z)|| < KR,

where k is the minimal degree of polynomial used to define W), and Ry, and K is a
constant, independent of h.

Numerical Results

In this section we provide one dimensional numerical results for the scheme discussed
above. The first and second test cases examine the coupled method’s ability to
handle high gradient regions, while the third test problem examines the order of
convergence of the method. The LDG method based on P! Legendre polynomials
and the conforming Galerkin finite element method with linear basis functions were
implemented on elements of equal size. Time discretization is by a second order
accurate TVD Runge-Kutta method [11] with a sufficiently small time step so that
error in time is negligible compared to spatial errors.

In the LDG method, we implemented a stability post-processing or slope-limiting
procedure at each step of the calculation to prevent spurious oscillations. In each cell
Q., the linear approximation on this cell can be written as

C=C.+C(x — ),
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Figure 1: Coupled approximate solution to convection diffusion test case 1.

where C, and JC, are determined from the variational form (29)-(32), and z. is the
midpoint of €2.. We then compare the slope dC, to forward and backward difference
approximations to the slope in each cell. That is, we compute,

60, | = 0, if (67C,) * (67C,) < 0,
7| min(|0C,], |67 C|,|67C,|), otherwise,

where 5__06 and 6+C, are forward and backward differences of the cell averages. The
sign of 6C, is chosen based on which quantity gives the minimum slope; 0C, then
replaces 6C, above.

Test case 1

We first consider the problem

Oic+ud,c—D0pe = 0, 0<zx<2m, t>0
c(z,0) = 0
(uec — Deg)(0,1) = wu.

We implemented the LDG method between [0, 7] and the CFE method between [, 27]
with the interface occuring at x = 7. Figures 1 (a)-(c) show the coupled approximate
solution, on meshes of 32, 64 and 128 equally spaced elements, with © = 1.0 and
D = 1.0, at three points in time. These figures illustrate the ability of the method to
propagate a solution smoothly through the interface. In each of these figures and the
ones below, we have plotted the value of the solution at the midpoint of each element
in the LDG region, and the value of the solution at each node in the CFE region.



Next we consider a convection dominated case with v = 1.0 and D = .001. Here
we would expect a continuous Galerkin solution to be oscillatory, at least on coarse
meshes. In Figures 2 (a)-(f), we compare approximate solutions for the coupled
method and for the continuous Galerkin method, respectively, at five different times,
for meshes of 32, 64 and 128 elements. As expected, the CFE solution is oscillatory for
the coarser meshes, but gives a good solution on the finer mesh. The coupled method
is also somewhat oscillatory in the CFE region for the coarser mesh, but gives good
solutions on the two finer meshes. In particular, by using the LDG method in the
first part of the domain, we are able to propagate the sharp front into the domain
without oscillation. Once the solution is “smoothed” by the diffusion in the problem,
the CFE method can then be used to further propagate the solution.

Since the LDG method involves more degrees of freedom than the CFE method, it is
of interest to see how close we can move the interface location to the inflow boundary,
before we start to see oscillatory behavior in the CFE region. Thus, we ran several
experiments where we varied the location of the interface point. For example, for a
mesh of 64 elements, with interface points at 7/2 and 7 /4, the solution exhibited very
little oscillation. However, as indicated in Figure 3, oscillations do begin to appear
in the solution when the interface is at 7/8. The solution here looks very similar to
the CFE solution in Figure 1 (d). Thus, to avoid oscillatory behavior, one should
propagate the solution sufficiently far into the domain using the LDG method, before
letting the CFE method take over.

Test case 2

Here we consider the same problem as above, with the initial condition

1, O0<z<.b
clx,0) = { 0, otherwise

and inflow boundary condition (uc — D¢,)(0,t) = 0. We again take v = 1 and
D = 0.001. Thus, this problem describes the propagation of a square initial pulse,
which slowly smooths out with time. In Figure 4, we compare the coupled LDG/CFE
solution with interface at + = 7 with a CFE solution, for 64, 128 and 256 elements.
The CFE solution in this case overshoots and undershoots on all three meshes, though
on the final mesh, the oscillations disappear as the solution propagates. The coupled
LDG/CFE solution remains stable for all three meshes, but does exhibit slightly more
numerical diffusion than the CFE solution.
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Figure 2: Coupled and continuous approximate solutions to convection dominated

test case 1.
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(f) Continuous N=128
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Figure 3: LDG/CFE solution with interface location at /8.
Test case 3

Finally, we consider a smooth test problem:

0 + u0yc — DOyye = 0 (0,7) x (0,2m),
¢(z,0) = sin(x) on (0, 27),

where various choices of u and D, and impose boundary conditions such that the
exact solution is

Plgin(z — ut). (33)

clz,t)=¢e
The errors and convergence rates for variants of this problem are contained in Tables
1 through 4. At time T=1.0, we measured the L? error in [0,27] composed of an
LDG region in [0, 7] and a CFE region in [, 27]. In each of the test cases presented,
“optimal” order (O(hP*!), in this case p = 1) accuracy was observed, which is better
than what we have proved above. Recall however, that our proof is valid for any space
dimension, and does not rely on the positivity of D. For positive D, we have derived
an improved convergence rate of order k£ + 1/2 in L*(L?) if certain penalty terms are
included in the formulation [14]. We have not included these terms in the method
presented here. Moreover, in one space dimension, an optimal order convergence rate
(in both h and p) for the LDG method applied to convection-diffusion equations,
has been proven by Castillo et al [6]. Their estimate assumes only a nonnegative
diffusion coefficient D, but depends on a particular choice of the numerical fluxes
between elements, and also on the use of a special projection of the true solution as
a comparison function.
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Figure 4: Coupled and continuous approximate solutions to test case 2.



Table 1. The convection equation. Table 2. The heat equation.

u=1.0 u = 0.0
D=00|N | L? error| k=1 D=10|N | L? error | k=1
32 | .005299 32 | .004227
64 | .001322 | 2.00 64 | .001054 | 2.00
128 | .000328 | 2.01 128 | .000263 | 2.00
256 | .000080 | 2.04 256 | .000066 | 2.00
Table 3. The convection dominated Table 4. The convection diffusion
equation. equation.
u=1.0 u=1.0
D=001|N | L?error| k=1 D=10|N | L? error | k=1
32 | .005076 32 | .004152
64 | .001251 | 2.02 64 | .001049 | 1.99
128 | .000309 | 2.02 128 | .000264 | 1.99
256 | .000075 | 2.04 256 | .000066 | 2.00
Conclusions

A coupled discontinuous/continuous Galerkin method has been formulated for trans-
port problems such as those arising in environmental quality modeling. Numerical
results demonstrate the accuracy of the method and the ability to propagate sharp
fronts.

Acknowledgment

This research was supported by NSF grants DMS-9873326 and DMS-9805491, and by
the DoD High Performance Computing Modernization Program U.S. Army Engineer
Research and Development Center (ERDC) Major Shared Resource Center through
Programming Environment and Training (PET), supported by Contract Number:
DAHC 94-96-C0002, Computer Sciences Corporation.

References

[1] V. A1zINGER AND C. DAWSON, Discontinuous Galerkin methods for two-
dimensional flow and transport in shallow water. to appear in Advances in Water
Resources.



2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

V. A1zINGER, C. Dawson, B. COCKBURN, AND P. CASTILLO, Local dis-
continuous Galerkin methods for contaminant transport, Advances in Water Re-
sources, 24 (2000), pp. 73-87.

P. AroTrTO, A. BERTONI, I. PERUGIA, AND D. SCHOTZAU, Discontinuous
finite element methods for the simulation of rotating electrical machines, in Pro-
ceedings of 9th International IGTE Symposium on Numerical Field Calculation
in Electrical Engineering, 2000.

F. BAssti AND S. REBAY, A high-order accurate discontinuous finite element

method for the numerical solution of the compressible Navier-Stokes equations,
J. Comput. Phys., 131 (1997), pp. 267-279.

P. CasTiLLo, B. COCKBURN, I. PERUGIA, AND D. SCHOTZAU, An a priori
error analysis of the local discontinuous Galerkin method for elliptic problems.
to appear.

P. CasTiLLO, B. COCKBURN, D. SCHOTZAU, AND C. SCHWAB, An optimal
a priori error estimate for the hp-version of the local discontinuous Galerkin
method for convection-diffusion problems. Math. Comp., to appear.

B. CockBURN AND C. DAWSON, Some extensions of the local discontinuous
Galerkin method for convection-diffusion equations in multidimensions, in The

Proceedings of the Conference on the Mathematics of Finite Elements and Ap-
plications: MAFELAP X, J. R. Whiteman, ed., Elsevier, 2000, pp. 225-238.

B. CockBURN, G. KANSCHAT, I. PERUGIA, AND D. SCHOTZAU, Superconver-
gence of the local discontinuous Galerkin method for elliptic problems on Carte-
stan grids. submitted.

B. CockBURN, G. KANSCHAT, D. ScHOTZAU, AND C. SCHWAB, Local dis-
continuous Galerkin methods for the Stokes system. submitted.

B. CockBURN, G. KARNIADAKIS, AND C.-W. SHU, The development of dis-
continuous Galerkin methods, in First International Symposium on Discontinu-
ous Galerkin Methods, B. Cockburn, G. E. Karniadakis, and C.-W. Shu, eds.,
Springer-Verlag, 2000, pp. 5-50.

B. CockBURN AND C. W. SHU, TVB Runge-Kutta local projection discontin-

wous Galerkin finite element method for scalar conservations laws II: General
framework, Math. Comp., 52 (1989), pp. 411-435.

—, The local discontinuous Galerkin method for time dependent convection-
diffusion systems, STAM J. Numer. Anal., 35 (1998), pp. 2440-2463.



[13] C. DAwsON AND J. PROFT, Coupling of continuous and discontinuous Galerkin
methods for transport problems. to appear.

[14] ——, A priori error estimates for interior penalty versions of the local discon-
tinuous Galerkin method applied to transport equations. to appear in Numerical
Methods for Partial Differential Equations.

[15] 1. PERUGIA AND D. SCcHOTZAU, The coupling of local discontinuous Galerkin
and conforming finite element methods. submitted.



